
Laboratory 14 PWM motor

1

Laboratory 14

Pulse-Width-Modulation Motor Speed Control with a PIC (modified from lab text by

Alciatore)

Required Components:
 1x PIC 16F88 18P-DIP microcontroller

 3x 0.1 F capacitors

 1x 12-button numeric keypad

 1x NO pushbutton switch

 1x Radio Shack 1.5-3 V DC motor (RS part number: 273-223) or equivalent

 1x IRFZ34N power MOSFET (4V transistion)

 1x flyback diode (e.g., the IN4001 power diode)

 4x 1k resistors

 3x red LEDs

 1x green LED

 4x 330 resistors

Required Special Equipment and Software:
 MPLab X, microchip technology’s IDE

 XC8, opensource compiler for PICs

 PICkit 2 software

 CanaKit USB PIC Programmer

Objective
The objective of this laboratory exercise is to design and build hardware and software to implement pulse-width

modulation (PWM) speed control for a small permanent-magnet dc motor. You will also learn how to

interface a microcontroller to a numeric keypad and how to provide a numerical display using a set of LEDs.

Introduction

Pulse Width Modulation

Pulse width modulation (PWM) offers a very simple way to control the speed of a dc motor and is one

of the building blocks of a DC->AC inverter. Figure 14.1 illustrates the principles of operation of PWM

Laboratory 14 PWM motor

2

control. A dc voltage is rapidly switched at a fixed frequency 𝑓 between two values ("ON" and "OFF").

A pulse of duration 𝑡 occurs during a fixed period 𝑇, where 𝑇 =
1

𝑓
 The resulting asymmetric

waveform has a duty cycle defined as the ratio between the ON time and the period of the waveform, usually

specified as a percentage:

𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 =
𝑡

𝑇
 100% (14.1)

As the duty cycle is changed (by varying the pulse width 𝑡), the average current through the motor will

change, causing changes in speed and torque at the output. It is primarily the duty cycle, and not the

value of the power supply voltage, that is used to control the speed of the motor.

Figure 14.1 Pulse-width Modulation (PWM)

With a PWM motor controller, the motor armature voltage switches rapidly, and the current through the motor is

affected by the motor inductance and resistance. For a fast switching speed (i.e., large 𝑓), the resulting

current through the motor will have only a small fluctuation around an average value, as illustrated in Figure

14.2. As the duty cycle gets larger, the average current gets larger and the motor speed increases.

Laboratory 14 PWM motor

3

Figure 14.2 PWM voltage and motor current

The type of PWM control described here is called "open loop" because there is no sensor feedback for speed.

This results in a simple and inexpensive design, but it is not possible to achieve accurate speed control

without feedback. For precision applications (e.g., industrial robotics, DC->DC power converters and DC->AC

power inverters), either a speed sensor (for motors) or a voltage sensor (for power converters and inverters) is

required to provide feedback to the electronics or software in order to adjust the PWM signal in real-time to

maintain the desired result (i.e., speed or voltage). For more information about precision motor control see

Section 10.5.3 in the textbook. Power converters and inverters (among other things) are covered in some

depth in Power Electronics II (PHY541).

Numeric Keypad Interface

Figure 14.3 illustrates the

appearance and electrical

schematic for a common 12-key

numeric keypad; although, the

pin numbering isn't always

consistent from one

manufacturer to another. When

interfaced to a microcontroller,

a keypad allows a user to input

numeric data. A keypad can also

be used simply as a set of

general-purpose normally-open

(NO) pushbutton switches. The

standard method to interface a

keypad to a microcontroller is to

attach the four row pins to

inputs of the microcontroller

and attach the three column pins

to outputs of the microcontroller.

By polling the states of the row inputs while individually changing the states on the column outputs, you

can determine which button is pressed. See Section 7.7.1 in the textbook for more information.

NOTE: If the pin-out of the keypad you are using is unknown, you can do a series of continuity tests (with

different buttons held down) to easily determine the pin-out corresponding to Figure 14.3b.

Figure 14.3 Standard 12-key numeric keypad

Laboratory 14 PWM motor

4

Hardware and Software Design
The hardware and software required for this exercise will be designed using the microcontroller-based design

procedure presented in Section 7.9 of the textbook. Each step is presented below.

1. Define the problem.

Use a PIC16F88 microcontroller to design a pulse-width modulation speed controller for a small permanent

magnet dc motor. The user should be able to change the speed via three buttons of a standard 12-key

numeric keypad. One button (the 1-key) should increase the speed setting, a second button (the 4-key)

should decrease the speed setting, and the third button (the *-key) should start the motor at the

selected speed. The speed setting should be displayed graphically via a set of 4 LEDs. The speed setting

should vary from "slow" to "fast" according to a scaled number ranging from 0 to 15 so the full range

can be depicted on the LED display. The motor should run at a constant speed until the motion is

interrupted by the user with the press of a pushbutton switch.

2. Draw a functional diagram.

This is left as an exercise for you. Please include it on a separate sheet of paper with your summary

sheet and questions at the end of the Lab. See Section 7.9 in the textbook for guidance.

3. Identify I/O requirements.

All inputs and outputs for this problem are digital and they are as follows:

inputs:

 3 buttons on the numeric keypad increase and decrease the speed and to start the

motion.

 1 pushbutton switch to interrupt the constant speed motor motion.

outputs:

 4 LEDs to indicate a relative speed setting from "slow" (0) to "fast" (15) as a binary number.

 1 pulse-width modulation (on-off) signal for the motor.

 1 to power a key-pad column.

4. Select an appropriate microcontroller.

For this problem, we will use the PIC16F88 whose 16 lines of digital I/O provide more than enough

capability for our I/O requirements.

5. Identify necessary interface circuits.

You will learn how to use a numeric keypad by poling columns and searching rows for pressed

buttons.

The motor speed will be controlled with a pulse-width modulation signal. We will use a power

MOSFET to switch current to the motor. The gate of the MOSFET will be connected directly to a

digital output pin on the PIC. The motor is placed on the drain side of the MOSFET with a diode

Laboratory 14 PWM motor

5

for flyback protection. A MOSFET is easier to use than BJT because it does not require a base

(gate) resistor, and you need not be concerned with base current and voltage biasing.

The LEDs will be connected directly to four digital outputs through current-limiting resistors to

ground. When the output goes high, the LED will turn on.

6. Decide on a programming language.

For this laboratory exercise, we will use MPLab X with C for PICs.

7. Draw the schematic.

Figure 14.4 shows the complete schematic showing all components and connections. Figure 14.5

shows a photograph of a completed design. The keypad is attached to bits 0-2 of PORTA and bit

7 of PORTB. The stop button is attached to bit 7 (of PORTA). The LEDs are attached to the four

lowest order bits of PORTB. This allows the speed setting (0 to 15) to be output to PORTB directly

(e.g., PORTB = speed). The result is a binary number display of the current speed where the

green LED represents the least significant bit. The motor PWM signal is on bit 4 of PORTB.

Figure 14.4 Complete schematic showing all components and connections. Note that LEDs are arranged from least significant
bit (LSB) to most (MSB).

Laboratory 14 PWM motor

6

NOTE - We are using only one column of the keypad.

Figure 14.5 Photograph of the actual device.

8. Draw a program flowchart.

Figure 14.6 shows the complete flowchart for this problem with all required logic and looping. Note that

the LED display is active only during the keypad loop while the user is adjusting the speed. The

keypad is polled using the Pot command and the speed display is updated approximately three

times a second. The motor runs continuously in the PWM loop until the stop button is pressed. At that

point the user can adjust the speed again.

Laboratory 14 PWM motor

7

Figure 14.6 One possible complete Program Flowchart

Laboratory 14 PWM motor

8

9. Write the code.

The code ("PWM.c") corresponding to the flowchart shown in Figure 14.6 using the

hardware illustrated in Figure 14.4 follows. The code is comented throughout with

remarks so it should be self-explanatory. Whenever you write programs, you should

always include copious remarks so you and others (e.g., co-workers and bosses) can later

interpret what you have done. Please recreate this before coming to Lab so you will

have more time to successfully complete the Lab in the allotted time.

Laboratory 14 PWM motor

9

Laboratory 14 PWM motor

10

The variable "speed" stores a relative measure of the motor speed as an integer that varies from 0

(slow) to 15 (fast). A speed of 0 corresponds to a duty cycle of 15% and a speed of 15 corresponds to a

duty cycle of 35%. These duty cycle percentages were determined experimentally to produce a good range

of motor speeds using a 5 V supply. (Note - the motor is rated at only 1.5 to 3 V so high duty cycles

would result in excessive average voltage, which could damage the motor.)

One challenge is how to deal with the variable amount of time to have the motor on and off (according

to the speed). The delay functions require constants, the language’s way of ensuring that the delay

doesn’t get extended because of calculations happening in the delay function input. To deal with this I

Laboratory 14 PWM motor

11

have defined 3 constants, _T0 which corresponds to the minimum time (in μs) for the motor to be run in

a duty cycle, _DT which is the amount that gets progressively added to the on time (in μs), and _TREST

the amount that the motor is certainly off in a cycle (in ms). As a result the on-time for the motor is

𝑡𝑜𝑛 = 𝑇0 + 𝐷𝑇 ∗ 𝑠𝑝𝑒𝑒𝑑

(in μs) and

𝑡𝑜𝑓𝑓 = 𝑇𝑅𝐸𝑆𝑇 ∗ 1000 + 𝐷𝑇 ∗ (15 − 𝑠𝑝𝑒𝑒𝑑)

(in μs) where the 1000 is for the number of μs in a ms.

Note that the period is constant

𝑇 = 𝑇𝑜𝑛 + 𝑇𝑜𝑓𝑓 = 𝑇0 + 𝑇𝑅𝐸𝑆𝑇 ∗ 1000 + 𝐷𝑇 ∗ 15

10. Build and test the system.

That is your job using the procedure in Section 14.5.

Troubleshooting and Design Improvement
There are several changes you can make to the circuit to improve the design's robustness. You will

definitely want to explore some of these recommendations if you have trouble getting your circuit to function

properly. Because the motor is being switched on and off, and because the currents in the motor are being

switched by the internal commutator, spikes and noise can occur on the 5V and ground lines. Also, the Lab power

supply voltage might be affected by current spikes (e.g., the voltage can drop suddenly, causing the PIC to reset).

To help minimize these effects, you can add a 1 F or larger capacitor across the 5V and ground line inputs to your

breadboard to help stabilize the voltage there. You might also try increasing the capacitance between Vdd and

ground on the PIC (i.e., replace the 0.1 F with 1 F or more). You can also add capacitance (e.g., 0.1-1.0 F) across

the tabs of the motor to help filter out spikes and noise from the commutation. Also, make sure the wires

attached to the motor are soldered to the motor tabs to ensure solid and reliable connections.

Another alternative is to use separate power sources for the PIC circuit (a Lab power supply) and the motor

(e.g., a second channel of the Lab power supply, or a 9V battery with a 5V voltage regulator). This will

help limit voltage fluctuations in the PIC circuit when the motor turns on and runs.

For other advice and recommendations, see Section 15.5 in Lab 15.

Laboratory 14 PWM motor

12

Procedure / Summary Sheet
1. Complete and attach a detailed functional diagram, using Sections 1.3 and 7.9 in the textbook for

guidance. Submit this on a separate sheet of paper.

2. Use an ASCII editor (e.g., Windows Notepad or MS Word - Text Only) to create the program "PWM.c" listed

in Section 14.3. Save the file in a folder in your network file space.

3. Follow the procedure in Section. 12.4 of Lab 12 to load your program in a PIC microcontroller that you

can insert into your circuit.

4. Build the circuit shown in Figure 14.4 and insert the PIC programmed with "PWM.c" You should omit

the motor driver circuit at first so and make sure that the keypad and LED displays work. Only then should

you insert the motor driver circuit.

5. See the Trouble Shooting Section if your circuit is assembled correctly but does not work properly.

Show me your functioning circuit so I can verify it is working.

Laboratory 14 PWM motor

13

LAB 14 QUESTIONS

Group: ____ Names: _______________________ ________________________

1. Did your circuit work the first time, without modifications? If not, what things did you try from

the Trouble Shooting Section? Which things worked, and why do you think they worked?

2. In the program, we used 30,000 microseconds for the PWM period. What frequency f (in Hz)

does this correspond to?

3. How would the motor respond to a very low (close to 0%) duty cycle PWM signal?

How would changing the PWM signal frequency f (i.e., making it lower or higher) change the motor

response?

Laboratory 14 PWM motor

14

4. What would happen if other keys (besides the 1-key, 4-key, and *-key) are pressed down during the

keypad loop?

What would happen if two of the three valid keys are pressed and held down at once (e.g., the 1-key

and the *-key)?

